WORKSHEET 2/6/23
 MATH 2331, SPRING 2023

(1) Describe the span of $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$.
(2) Describe the span of $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0\end{array}\right]\right\}$.
(3) Find a collection of vectors that spans the image of each matrix. Be as efficient as you can!
(a) $\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$
(4) Are the the column vectors of the matrix from part (c) linearly independent?
(5) Are there any nontrivial linear relations among the vectors $\vec{v}_{1}=(1,2,3), \vec{v}_{2}=(4,5,6)$, and $\vec{v}=(7,8,9)$?
(6) How large could a collection of linearly independent vectors in \mathbb{R}^{n} be?
(7) Suppose that \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3} are linearly independent vectors. How many ways could there be to write a vector \vec{v} as a linear combination of these vectors?

