WORKSHEET 2/23/23
 MATH 2331, SPRING 2023

In these problems, $\vec{u}_{1}=\frac{1}{2}(1,1,1,1), \vec{u}_{2}=\frac{1}{2}(1,1,-1,-1), \vec{u}_{3}=\frac{1}{2}(1,-1,1,-1)$, and $V=$ $\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right)$.
(1) Suppose that $c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+c_{3} \vec{u}_{3}=\overrightarrow{0}$. What can you say about c_{1}, c_{2}, and c_{3} ? If you're writing down a matrix, you're working too hard!
(2) Find a basis for V. Don't work too hard!
(3) Extend your basis from $\# 2$ to a basis \mathfrak{B} for \mathbb{R}^{4}. Don't work too hard!
(4) Given a vector \vec{x} in \mathbb{R}^{4}, what is $[\vec{x}]_{\mathfrak{B}}$? If you're writing down a matrix, you're working too hard!
(5) Suppose that $\mathfrak{B}=\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \overrightarrow{u_{4}}\right\}$ is an orthonormal basis for \mathbb{R}^{4}. If $V=\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right)$, find $\left[\operatorname{proj}_{V}\right]_{\mathfrak{B}}$.
(6) Let L be the line parallel to $\vec{v}_{1}=(3,4,0)$. Find an orthonormal basis for L.
(7) Let W the plane spanned by $\vec{v}_{1}=(3,4,0)$ and $\vec{v}_{2}=(1,0,0)$. Extend the basis you found in $\# 6$ to an orthonormal basis for W.

