WORKSHEET 2/23/23 MATH 2331, SPRING 2023

In these problems, $\vec{u}_1 = \frac{1}{2}(1,1,1,1)$, $\vec{u}_2 = \frac{1}{2}(1,1,-1,-1)$, $\vec{u}_3 = \frac{1}{2}(1,-1,1,-1)$, and $V = \text{Span}(\vec{u}_1,\vec{u}_2,\vec{u}_3)$.

- (1) Suppose that $c_1\vec{u}_1 + c_2\vec{u}_2 + c_3\vec{u}_3 = \vec{0}$. What can you say about c_1 , c_2 , and c_3 ? If you're writing down a matrix, you're working too hard!
- (2) Find a basis for V. Don't work too hard!
- (3) Extend your basis from #2 to a basis \mathfrak{B} for \mathbb{R}^4 . Don't work too hard!
- (4) Given a vector \vec{x} in \mathbb{R}^4 , what is $[\vec{x}]_{\mathfrak{B}}$? If you're writing down a matrix, you're working too hard!
- (5) Suppose that $\mathfrak{B} = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ is an orthonormal basis for \mathbb{R}^4 . If $V = \text{Span}(\vec{u}_1, \vec{u}_2, \vec{u}_3)$, find $[\text{proj}_V]_{\mathfrak{B}}$.
- (6) Let L be the line parallel to $\vec{v}_1 = (3, 4, 0)$. Find an orthonormal basis for L.
- (7) Let W the plane spanned by $\vec{v}_1 = (3, 4, 0)$ and $\vec{v}_2 = (1, 0, 0)$. Extend the basis you found in #6 to an orthonormal basis for W.

1