WORKSHEET 9/28/23
 MATH 2331, FALL 2023

(1) Let A be an $m \times n$ matrix.
(a) Suppose that $\operatorname{ker}(A)=\{\overrightarrow{0}\}$. What can you say about the rank of A ?
(b) Suppose that $\operatorname{im}(A)=\mathbb{R}^{m}$. What can you say about the rank of A ?
(2) Think of an $m \times n$ matrix A with $\operatorname{im}(A)=\mathbb{R}^{m}$ and $\operatorname{ker}(A) \neq\{0\}$.
(3) Think of an $m \times n$ matrix B with $\operatorname{ker}(A)=\{0\}$ and $\operatorname{im}(A) \neq \mathbb{R}^{m}$.
(4) Describe the span of $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$.
(5) Describe the span of $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0\end{array}\right]\right\}$.
(6) Find a collection of vectors that spans the image of each matrix. Be as efficient as you can!
(a) $\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$
(7) Are the the column vectors of the matrix from part (c) linearly independent?

