WORKSHEET 9/11/23
 MATH 2331, FALL 2023

(1) Consider the following system of equations:

$$
\begin{aligned}
2 x+4 y-2 z & =-10 \\
3 x+6 y & =-12 \\
y+z & =3
\end{aligned}
$$

(a) What is the coefficient matrix A of the system?
(b) What is the augmented matrix of the system?
(c) Use Gauss-Jordan elimination to solve the system.
(d) What is the reduced row echelon form of $A($ notation: $\operatorname{rref}(\mathrm{A}))$?
(2) Given the reduced row-echelon form of the matrix, how many solutions does the corresponding system of linear equations have?
(a)

$$
\left[\begin{array}{lll:l}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & 4 \\
0 & 1 & 7 & 3
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{lll:l}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(d)

$$
\left[\begin{array}{lll:l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(e)

$$
\left[\begin{array}{lll|l}
1 & 2 & 3 & 4
\end{array}\right]
$$

(f)

$$
\left[\begin{array}{ll:l}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(g)

$$
\left[\begin{array}{l|l}
1 & \mid \\
0 & 1 \\
0 & 2 \\
0
\end{array}\right]
$$

(3) For which values of k is the system of linear equations

$$
\begin{aligned}
& 2 x+2 y+k z=3 \\
& k x+k y+8 z=k+2
\end{aligned}
$$

consistent? When it is consistent, for which values is there a unique solution, and for which values are there infinitely many?

