WORKSHEET 10/16/23
 MATH 2331, FALL 2023

In these problems, $\vec{u}_{1}=\frac{1}{2}(1,1,1,1), \vec{u}_{2}=\frac{1}{2}(1,1,-1,-1), \vec{u}_{3}=\frac{1}{2}(1,-1,1,-1)$, and $V=$ $\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right)$.
(1) Can you find a vector \vec{u}_{4} such that $\vec{u}_{1}, \ldots, \vec{u}_{4}$ are orthonormal?
(2) Suppose that $c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+c_{3} \vec{u}_{3}=\overrightarrow{0}$. What can you say about c_{1}, c_{2}, and c_{3} ? If you're writing down a matrix, you're working too hard!
(3) Find a basis for V. Don't work too hard!
(4) Extend your basis from $\# 3$ to a basis \mathfrak{B} for \mathbb{R}^{4}. Don't work too hard!
(5) Given a vector \vec{x} in \mathbb{R}^{4}, what is $[\vec{x}]_{\mathfrak{B}}$? If you're writing down a matrix, you're working too hard!

