WORKSHEET 11/9/23
 MATH 2331, FALL 2023

(1) Find the eigenvectors of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 3 & 2 \\ 0 & 1 & 2\end{array}\right]$.
(2) Suppose that \vec{v}_{1} and \vec{v}_{2} are eigenvectors of A with eigenvalues λ_{1} and λ_{2}, respectively.
(a) Is $5 \vec{v}_{1}$ an eigenvector of A ?
(b) Is $\vec{v}_{1}+\vec{v}_{2}$ an eigenvector of A ?
(3) Let A be an $n \times n$ matrix.
(a) Is the collection of eigenvectors of A a subspace of \mathbb{R}^{n} ?
(b) Is the collection of eigenvectors of A with eigenvalue λ a subspace of \mathbb{R}^{n} ?
(4) Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) For each eigenvalue λ, find a basis for the eigenspace E_{λ}.
(c) Is A diagonalizable?
(5) For each eigenvalue λ you found in the previous problem, write down its algebraic and geometric multiplicity. Do you notice anything?

