Last tine

- Hurewicz: $\pi_{1}\left(x, x_{0}\right)^{a b} \cong H_{1}(x)$
- Toward $\pi_{1}\left(S^{\prime}{ }^{\prime} s^{\prime}\right)$

Tho (Seffert-van Kampen) Suppose that $X=u_{1}, U_{2}$ with $U_{1}, u_{2} \subseteq x$ open and U_{1}, u_{2} and U_{1}, u_{2} all path connected. Gives a group G and the solid commutay diagram of homomaphisms

(i.e., such that $\left.\varphi_{0}\left(i_{j}\right)_{s}=\varphi_{2}\left(j_{j}\right)_{k}\right)$, the dashed filler φ (ie., such that $\varphi_{0}\left(i_{1}\right)_{m}=\varphi_{1}$ and $\varphi_{0}\left(i_{2}\right)_{t}=\varphi_{2}$) exists and is unique, where $x_{0} \in U_{1} \cap U_{2}$

We have already proven uniqueness, and the same result tells us how to define 6 .

Def A (path/loop) factorization of $[2]$ of length r is an r-tuple $\left(\left(\gamma_{1}, a_{1}\right), \ldots\left(r_{r}, a_{r}\right)\right)$, where
(1) $a_{k} \in\{1,2\}$
(2) γ_{k} is a $\left(\right.$ path $/ 100$ a at x_{0}) lyse entirely ins U ak
(3) $\gamma \simeq_{p} \gamma_{1} \star \cdots \gamma_{k}$.

Givers a loop factorization of $[2], \varphi([2])$ is determined by the requirements that $\varphi\left(i_{1}\right)_{*}=\varphi_{1}, \varphi_{0}\left(i_{2}\right)_{A}=\varphi_{2}$ and φ is a homomorphism:

$$
\left.\varphi([\gamma])=\varphi_{a_{1}}\left(\left[\gamma_{1}\right]\right) \cdots \varphi_{a_{k}}\left(\gamma_{k}\right]\right)
$$

Since ever $[r]$ admits a $100 p$ factorization by our ear liver generation result, it suffices to verify that this expression is indepren dent of the choice of factarization.
Def Path factorizations are path equivalent of they differ by a fmite sequence of the following operations:
(A) exchave $\left(\left(\partial_{1}, a_{1}\right), \ldots,\left(\partial_{r}, a_{r}\right)\right)$ with $\left(\left(\partial_{1}, a_{1}\right), \ldots\left(\partial_{x-1}, \partial_{k}, a_{x}\right), \ldots,\left(\partial_{r}, a_{r}\right)\right)$ if $a_{k-1}=a_{k}$,
(B) exchange $\left(\partial_{k}, 1\right)$ with $\left(j_{2}{ }^{\circ} \partial_{k}^{\prime}, 2\right)$ if $\partial_{k}=j_{1} \partial_{k}^{\prime}$
for some $\partial^{\prime}:[0,1] \rightarrow U_{1} \cap U_{2}$,
(c) replace $\left(\partial_{x}, a_{k}\right)$ with $\left(\partial_{k}^{\prime \prime}, a_{k}\right)$ if $\partial_{k} \simeq_{p} \partial_{w}{ }^{\prime \prime}$ via a path homotury lysis is Van.

Two loop factorizations are loop equivalent if they are path equivalent through loop factorizations.
Leman I Any truro path factorizations of [ว] ore path equivalent.
Leman 2 If loop factorizations are path equivalent, then thy are loop equivalent. Proof of then By, the lemmas, it suffices to show thant the dufmitin of φ is nsvourout under the there moves be tureen loop factorizations.

For (A), we use that $\varphi_{a x}$ is a nomomaphism, for (B) we use that $\varphi_{a_{1}} \cdot\left(j_{1}\right)_{*}=\varphi_{a_{2}} \cdot\left(j_{2}\right)_{*}$, and for (C) the claim is mme diate.
Lemma 3 A factorization of length r is equivalent to solve factorization of length R for any $R \geq r$.
Proof the factorization $(\left(r_{1}, a_{1}\right), \ldots,\left(r_{r}, a_{r}\right), \underbrace{\left(e_{x_{0}}, a_{r}\right), \ldots,\left(e_{x_{0}}, a_{r}\right)}_{R-r})$ is equrabent to $\left(\left(\partial_{1}, a_{1}\right), \ldots,\left(\partial_{r}, a_{r}\right)\right)$ via $R-r$ prorations of type (A) and one of type (C).
Proof of Leman I WLOG the two factorization hare the sarre length, say $\partial, \ldots \partial_{r}$ and $\delta_{1} \ldots \delta_{r}$. Choose a path hrmotory H
betweren them, and subdwide $[0,1] \times[0,1]$ into squeres of side $1 / N$ with anige moder H entrely is N_{1} or U_{2} (apply the LNL to $\left\{F^{-1}\left(U_{1}\right), H^{-}\left(U_{2}\right)\right\}$. Without loss of geverality, $r \mid N$.

$$
\binom{N=4}{r=2}
$$

Every non-decreasiy path of edyes forn (0,0) to $(1,1)$ determines a path facturizatirs of the save homotury class (we use convexity), well-defmed up to (B) moves:

The factovizations carespondiy to the two paths arond the bondary differ from our arigmal factarizatrins by (A)
and (C) mares. The clains followrs upon obserny thent the factorizations carespondy to any two paths of edges differ by (C) and (potentially) (B) mones (agaris by corvexity):

$$
\longleftrightarrow
$$

The proof of Leman 2 is left as an exercise.

The theorem characterizes $\pi_{1}\left(x, x_{0}\right)$ by a universal property.
Exercise A grans satisfying the conclusions of SVK is unique up to unique isomuphism under $\pi_{1}\left(u, x_{0}\right)$ and $\pi_{1}\left(v, x_{0}\right)$.
Rok This universal property is that of the "pushont in the category of groups".

We now make the theorem more explicit.
Prop Gives the solid commuting diograms of homomorphisms
the dashed filler exists and is unique.
Roof Ignoring t, the universal property of the free e group produces the unique homomorphism

But $\operatorname{ker}(\tilde{\zeta}) \geq N$, where N is the normal closure of $\left\{\psi_{1}(h) \psi_{2}(h)^{-1} \mid h \in H\right\}$.

$$
\begin{aligned}
\tilde{\varphi}\left(\psi_{1}(h) \psi_{2}(h)^{-1}\right) & =\tilde{\varphi}\left(\psi_{1}(h)\right) \tilde{\varphi}\left(\psi_{2}(h)\right)^{-1} \\
& =\varphi_{1}\left(\psi_{1}(h)\right) \varphi_{2}\left(\psi_{2}(h)\right)^{-1} \\
& =1
\end{aligned}
$$

by commutativity. The universal property of the quotient provides the unique hourmuphism

$$
\begin{aligned}
& G_{1} * G_{2} \xrightarrow{\text { ni sm }} G^{\tilde{\varphi}}, \rightarrow- \\
& G_{1} * G_{2} / \mathrm{N}
\end{aligned}
$$

Cor $\pi_{1}\left(S^{\prime} \cup S^{\prime}\right) \cong \mathbb{Z} \not \approx \mathbb{Z}$, a firee grup in two geverators.

We now have a farrly sutis factury understondy of the fudaventol grmp.
Dues aything we've dure so fow apply to hisher homotory groups?
Observation The Iiftiy carrespondence fur a path carrected corein spacer $p: E \rightarrow B$ with fher F gives the "exact sequenve"

$$
\pi_{1}(F) \rightarrow \pi_{1}(E) \rightarrow \pi_{1}(B) \rightarrow \pi_{0}(F) \rightarrow \pi_{0}(E) \rightarrow \pi_{0}(B)
$$

To sindy such segverues mure geverathy, we imitate our two-step approach for homoluyy.
(1) Define velative gromps that olovioushy form a LES
(2) Interpuet velative grups in good situations.

Extendiy ou notation, green subspares $X \supseteq A \supseteq x_{0}$ and $Y \supseteq B \supseteq y_{0}$, we unite

$$
[(x, A),(y, B)]=\left\{f:\left(x, A, x_{0}\right) \rightarrow\left(y, B, y_{0}\right)\right\} / \sim,
$$

where $f \sim g$ of $\exists H: X \times[0,1] \rightarrow Y$ such then $)^{-}$ $H(-, 0)=f, H(-, 1)=g, H(A \times[0,1]) \subseteq B$, and $H\left(x_{0},-\right)=y_{0}$. We mite

$$
\pi_{n}\left(x, A, x_{0}\right)=\left[\left(D^{n}, \delta^{n-1}\right),(x, A)\right] .
$$

Exercise $\pi_{n}\left(x, A, x_{0}\right)$ is a group for $n>1$ and Abeliom for $n>2$.

We refer to the nth hamotary grump of X relate to A (barred at x_{2})

Exercise An element $[f] \in \pi_{n}\left(x, A, x_{0}\right)$ is trivial if the dashed una exists in the diogrom

"compressions criterion"
many the bottom triangle commute up to homotorny rel δ^{n-1}, ie., fixing s^{n-1} pointurise.

Thm The assrynments

$$
\begin{aligned}
\pi_{n}\left(x, A, x_{0}\right) & \xrightarrow{2} \pi_{n-1}\left(A, x_{0}\right) \\
{[f] } & \longmapsto f\left|\left.\right|_{g^{n-1}}\right] \\
\pi_{n}\left(x, x_{0}\right) & \longrightarrow \pi_{n}\left(x, A, x_{0}\right) \\
{[f] } & \longmapsto\left[D^{n} \xrightarrow{q} S^{n} \xrightarrow{f} x\right]
\end{aligned}
$$

are arell-defived and homonouphimus for $n>1$. Mureover, the sequenve

$$
\begin{aligned}
& \cdots \rightarrow \pi_{n}\left(A, x_{0}\right) \rightarrow \pi_{n}\left(x, x_{0}\right) \rightarrow \pi_{n}\left(x, A, x_{0}\right) \\
& \rightarrow \pi_{n-1}\left(A, x_{0}\right) \rightarrow \cdots \rightarrow \pi_{0}\left(A, x_{0}\right) \rightarrow \pi_{0}\left(x, x_{0}\right)
\end{aligned}
$$

is exact.

