PROBLEM LIST 1 TOPOLOGY 3, SPRING 2024

Problem 1. Without using the Seifert–van Kampen theorem, decide whether the fundamental group of each of the following spaces is trivial, infinite cyclic, or non-Abelian. Justify your answer.

- (1) The solid torus $D^2 \times S^1$.
- (2) The punctured torus $T^2 \setminus \{(1,1)\}$.
- (3) The cylinder $S^1 \times [0, 1]$.
- (4) The twice-punctured plane $\mathbb{R}^2 \setminus \{(0,1), (0,-1)\}.$
- (5) The space of vectors in \mathbb{R}^2 of length strictly greater than 1.
- (6) The space of vectors in \mathbb{R}^2 of length at least 1.
- (7) The space of vectors in \mathbb{R}^2 of length strictly less than 1.
- (8) The union in \mathbb{R}^2 of the unit circle and the positive x-axis.
- (9) The union in \mathbb{R}^2 of the unit circle and the half-plane $\{(x, y) : x \ge 0\}$.
- (10) The union in \mathbb{R}^2 of the unit circle and the x-axis.

This problem is mostly Munkres 9.58.2, although our notation differs.

Problem 2. In this problem, you will show that Abelian fundamental groups at different base points are *canonically* isomorphic. More specifically, given points x_0 and x_1 in the path connected space X, show that $\pi_1(X, x_0)$ is Abelian if and only if $\hat{\alpha} = \hat{\beta}$ for every pair of paths α and β from x_0 to x_1 . This problem is Munkres 9.52.3.

Problem 3. Let G_1 and G_2 be nontrivial groups, and define $G = G_1 * G_2$.

(1) Show that G is non-Abelian.

Given $g \in G$, define the *length* of g, denoted $\ell(g)$, to be the length of the unique reduced word in G_1 and G_2 representing g.

- (2) Show that, if $\ell(g) > 0$ is even, then g does not have finite order.
- (3) Show that, if $\ell(g) > 1$ is odd, then g is conjugate to an element g' such that $\ell(g') < \ell(g)$.
- (4) Show that, if $g \in G$ has finite order, then g is conjugate to an element of G_1 or an element of G_2 . When does the converse hold?

This problem is Munkres 68.2.

Problem 4. Let X be a space, $x_0 \in X$ a point, and $X_i \subseteq X$ a closed subspace for $1 \leq i \leq r$. If $X = \bigcup_{i=1}^r X_i$ and $X_i \cap X_j = \{x_0\}$ for $i \neq j$, then we say that X is the *wedge* of the spaces X_i and write $X = X_1 \lor \cdots \lor X_r$.

(1) Suppose that x_0 is a deformation retract of an open subset W_i of X_i for each $1 \le i \le r$. Show that the inclusions of the X_i induce an isomorphism

$$\pi_1(X_1, x_0) \ast \cdots \ast \pi_1(X_r, x_0) \xrightarrow{\simeq} \pi_1(X, x_0).$$

(2) Fix $n_i \ge 0$ for $1 \le i \le r$. Calculate $\pi_1(S^{n_1} \lor \cdots \lor S^{n_r}, x_0)$.

This problem includes Munkres 70.2 and 70.3.

Problem 5. Let GL_2 denote the set of invertible 2×2 matrices with real entries. This set inherits a topology as a subspace of \mathbb{R}^4 (the space of all 2×2 matrices with real entries).

- (1) Show that matrix multiplication $m: GL_2 \times GL_2 \to GL_2$ and matrix inversion $i: GL_2 \to GL_2$ are continuous (you may assume that addition and multiplication of real numbers are continuous).
- (2) Show that the operation \otimes defined by $[\gamma_1] \otimes [\gamma_2] = [m(\gamma_1, \gamma_2)]$ defines a group law on $\pi_1(GL_2, I)$, where I is the identity matrix.
- (3) Show that the group law defined in (2) is the same as the usual group law defined by concatenation of loops.
- (4) Use (2) to show that $\pi_1(GL_2, I)$ is Abelian.

This problem is valid for matrices of any size; in fact, it is valid for any *topological group* (see Munkres 9.52.7).

Problem 6. Prove the compression criterion: the element $[f] \in \pi_n(X, A, x_0)$ is trivial if and only if there is a map $\tilde{f}: D^n \to A$ making the diagram

commute up to homotopy rel S^{n-1} . Beware spoilers everywhere.

Problem 7. Let Σ_g denote the compact, orientable surface of genus g.

- (1) Use the Van Kampen theorem to calculate $\pi_1(\Sigma_q)$.
- (2) Show that $\pi_n(\Sigma_g) = 0$ for g > 0 and n > 1.
- (3) What about non-orientable surfaces?

Beware spoilers everywhere.

Problem 8. Show that S^{∞} is contractible. Beware spoilers in Hatcher.